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SUMMARY 

Under a new type of vector multiplication, a group 
(whose elements are vectors) is defined which is isomor- 
phic to the group of rotations. This allows a vector repre- 
sentation of rotations which has many advantages over the 
usual matrix o r  Eulerian angles approach-e.g., this vector 
representation avoids the need for trigonometric relation- 
ships and requires only three independent parameters. 

The simplicity of this vector representation is demon- 
strated by its use in several applications; in  particular, an 
analytic solution to a least-squares rotation problem is 
presented. The differential equations defining the motion 
of a rigid body a re  also obtained in terms of avector differ- 
ential equation. 
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1. INTRODUCTION 

The usual approach to the algebra of rotations is by means of matrix algebra, 
where the matrix of the rotation is defined by the product of simple rotation mat- 
trices. Each of the simple rotations is about a coordinate axis and is uniquely 
determined by an angle. The most general rotation is uniquely defined by three 
angles (Eulerian angles) provided that the axis of each rotation is known. Since 
the convention of defining Eulerian angles varies considerably in the literature, 
the product matrix is ambiguous when only three angles a r e  known. The angular 
or  matrix approach to rotations is complicated further in that it requires the 
evaluation of trigonometric functions, which necessitates the use of tables or a 
computer. 

vectors, which is isomorphic to the group of rotation matrices. The algebra 
of rotations can then be represented by the algebra of vectors (dot and cross  
product plus a new vector product which will be defined later), and does not re- 
quire the evaluation of trigonometric functions. 

A comment on notation: Matrices and vectors will be denoted by capital 
English letters and their elements by small English letters with subscripts. 
All  vectors a r e  considered to be column vectors, and a superscript T is used 
to denote the tranpose of a vector o r  matrix. A superscript of -1 represents 
the inverse matrix. Primes will be used to denote the transform of a vector. 
Vector notation, including that for the dot and cross product, is used in this 
paper merely to simplify the algebraic relationships existing among the .corn- - 
ponents of various vectors, and is not intended to provoke physical interpretation. 
For  example, even though two vectors may represent the same physical quantity, 
they are not regarded as equal unless they a r e  expressed in the same coordinate 
system. Similarly, the notation u = VX W may be used (even thoughV and W a r e  
expressed in different coordinate systems) merely to indicate that the components 
of U are formed from the components of V and W according to the standard equa- 
tions for  cross products. It will be assumed throughout that all coordinate sys- 
tems are right-handed orthonormal systems. 

The approach here is to define a group, whose elements are three-dimensional 

,- 

2. VECTORS DEFINING ROTATIONS AND THEIR ALGEBRA 

If R is the matrix of a rotation then 111 and [21 show that R may be expressed 
by 
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where X ( xl, x 2 ,  x3) is a unit vector defining the axis of rotation and 0 is 
the angle of rotation. Unless otherwise stated it is assumed here that X has been 
selected so that 0 I e S7-r. This can always be done since Rx ( 0 )  = R- ( - 8 )  and 
R, (r + 0)  = R-, (T -e) .  

The follow'hg expression for R may also be found in [l] : 

R = ( B ~ ) - ' B  , 

where 

-x2 t an  3 
e 

e 
1 x3 t an  3 

e 
B =  -x3 t an  2 1 (3) 

e e 
x 2  t an  7 -xl tan - 2 

In order to eliminate the angle in equations (1) and (3) we assign a length 
(which is a function of 8)  to X , in such a way that the sine and cosine of 0 can be 
determined by this length. Many such functions exist, and we choose tan  8/2 and 
s i n  e/2 as examples. Thus, let 

by standard trigonometric identities we obtain: 

= is, e fl 
s i n -  = 2 m 

s i n e  = ~ 2r'y2 - - 2 d z i j  , 
1 +'Y2 

1 - Y 2  
= - - - 1 - 2z2 . 

1 +Y2 
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Hence the definition of R as given by equation (l), using y and Z respectively, 
becomes 

and 

0 0 1  

As a function of Y, equation (3) becomes 

(5) 

Thus every vector Y defines a rotation matrix by equation (4), and every vector 
Zwith Z2 I 1 defines a rotation matrix by equation (5). Hence equations (4) and 
(5) define mappings which map sets of vectors into the set of rotations. We have 
yet to verify that the mapping is onto, Le., that for every rotation matrix there 
exist vectors Y and Z such that equations (4) and (5) define the matrix of the 
rotation. 

Let R be the matrix (with elements rij) of a rotation. Separating R into sym- 
metric and skew-symmetric parts, we have 

1 1 
R = 7 ( R + R T )  + r ( R - R T )  ; 
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comparing this with equation (5), we get the following relations: 

3 - 4 2 2  = 0 1  

where ff is the trace of R ;  

1::) 
r 2 1  

( r 3 2 t  r 2 3 )  ' 

1 - 

2 z 1  '3 - ( r 1 3  t r 3 1 )  ' 

- 
1 - 2 ( z ; + z J z )  - r l l  , 

t 

(7) 
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These last three equations imply 

z: 

J 

Thus to express R in the form of equation (5), Z must satisfy nine conditions; 
however, by using the well-known properties of rotation matrices, it  is easy to 
verify that these nine conditions are consistent. 

Equations (7) and (8) give a convenient expression for Z ,  namely, 

Z 

provided Z 2 #  1. If Z2 = 1, then equations (9) and (10) may be used to determine 
Z. In this case, however, Z is not unique, since -Z.also satisfies equations (9) 
and (10) if Z does. In practice, this ambiguity is of no consequence, since if 
Z2 1, Z and -Z yield the same matrix. 

From equation (l), we find that u = 1 t 2 cos 0 ,  which by equation (11) implies 
that Z 2  L 1. 

Hence the mapping defined by equation (5) is a mapping of three-dimensional 
vectors over the field of real  numbers whose length is less than or  equal to unity 
(denote this set  of vectors by 5 )  - onto the group of rotation matrices. The mapping 
is also one-to-one except when Z2 = I( 5 = - 1). 
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The vector Y may be obtained either directly from the matrix R (in a manner 
analogous to the preceding), or from the vector Z by using the relationship 

Y =  l z  
4 1 7  

Thus, 

The vector Y is undefined when G- = - 1 . This singularity may be removed if we 
agree to allow vectors of infinite magnitude whose direction Is given by a unit 
vector, X say. For such vectors, equation (4) becomes 

With this convention, Y may be obtained from the rotation matrix R with trace -1 
merely by observing that x = 2 in this special case. Hence, X may be obtained 
from equations (9) and (10). 

Let q denote the set  of all real three-dimensional vectors augmented by the 
vectors of infinite magnitude discussed above. Then equations (4) and (14) define 
a mapping from q onto the group of rotation matrices. 

Thus, either of the two sets 5 or q may be used to parametrize the group of 
rotations. However, when vectors are usedfor this purpose it should be emphasized 
that they correspond to  transformations. Hence, it is their algebraic properties as 
transformations that we a re  primarily concerned with, and not their properties as 
vectors (indeed 5 is not even a vector space). It is of no consequence that 
two elements of 5 or qmay be equal in the sense of equality of transforma- 
tions but not equal in the normal sense of vector equality. On the other 
hand, the abundance of vector operations and their algebraic properties that 
are normally employed to simplify relationships between components of vec- 
tors  can also be appliea '0 vectors corresponding to a rotation. Indeed, it 
is the fact that the algebiz of vectors as rotations can be expressed in terms 
of standard vector notation that makes the vector parametrization appealing. In 
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order to distinguish vectors used to parametrize rotations from ordinary vectors 
which are transformed by rotations, we introduce a new type of vector which is 
obtained by defining a new equivalence relation among real three-dimensional 
vectors. Definition: Given a set  8 of real three-dimensional vectors and a map- 
ping 7 which maps 6 onto the group of rotation matrices then two elements of 6 
a r e  said to be equivalent if they map into the same rotation matrix. 

For the two sets 5 and 77 defined above, vector equivalence is the same as 
vector equality except for vectors mapping into rotation matrices with trace of -1. 

Clearly, vector equivalence as defined above is an equivalence relation and 
separates the sets 5 and q into disjoint classes. 

These equivalence classes are merely the inverse images under T of the 
rotation matrices, We shall call these equivalence classes "rotation vectors" 
and denote them in the same manner as ordinary vectors. 

The usual algebra associated with vectors is also applicable to rotation 
vectors. The well-known operations of scalar multiplication, vector addition, 
dot and cross  products are performed on rotation vectors in the classical man- 
ner  and the ordinary symbolism is used to denote these operations. When there 
is more than one vector in the equivalence class,  the result of an operation is 
that obtained by using either vector. However, the same vector must be used 
throughout any one expression. 

Given two rotation vectors Y , and Y,, equation (4) defines two rotation ma- 
trices, say R , and R,  respectively. It is well-known that R = R, R, is also the 
matrix of a rotation. Thus by a previous discussion there exists a rotationvector 
Y which defines R. This rotation vector Y can be obtained from equation (13) by 
forming the product R, R, in terms of Y , and Y ,, which gives the remarkably 
simple expression 

Y +Y', +Y, x Y,). 1-Y, *Y, P I  
1 

If 2, and 2, a re  members of 5 defining R ,  and R,  respectively then the Ze5 
defining R , such that R = R, R , , may be obtained in a similar manner i.e. by 
comparing the trace and skew-symmetric part of R, R, with the trace (0) and 
skew-symmetric part of R respectively as given by equation (5). This gives 

u = 3-42, = 3-42;, 
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rn z = ( f 1 7  f i i - z ,  * z , ) z ,  , 

where 

Thus 

1 - 2 2  = 1 - zo '  = f i i - z l . z 2 ] 2  , 

and 

where the'sign depends only on the numerator since -20 by definition i.e. 

is defined to be '1, -1 according as x is positive or negative, respectively (here 
zero is considered positive or  negative) 

cos 6/2 where 0 5 6 l r .  Hence, using the signum function, sgn (x), which 

The above argument does not guarantee that the Z as given by equation (16)  cor- 
responds to R = R, R, when z2 = 1. However, it is straightforward, but tedious, 
to verify that equation (16)  indeed gives the Z defining R = R, R, for  all 2, and Z ,  
contained in < corresponding to R , and R, respectively. 

Actually equation (16)  may be obtained more readily from equations (12)  and 
(15) ,  and the identity 

1 z =  my 
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.. 

which is a useful formula since it is  also valid in the limit as y 2  approaches 
infinity. 

Equations (15) and (16) suggest a new type of vector product. Definition: 
Let 6 be a set of vectors, let * be a binary operation on 6 and let be a mapping 
of 6 onto the group of rotation matrices. Then * i s  said to be a rotation product 
if it is preserved by 7,  i.e. if 7 ( V *  W )  = T (v) 7 ( W ) ,  for every V and W in 6 .  

Thus for Z, ,  Z, in 5 ,  the productZ = Z, * Z, given by equation (16) is a 
rotation product. In a similar vein, for Y ,, Y,in 7 7 ,  equation (15) defines a ro- 
tation product, except when Y ,  * Y,= 1, or  when either of the rotation vectors has 
infinite magnitude, In these exceptional cases, we define the product Y , * Y , by 
forming Z, and Z, by equation (17), Z, * Z, by equation (16) and then Y, * y,’by 
equation (12). 

Let 77’ and 1’ denote the two sets of rotation vectors (equivalence classes) 
defined by vector equivalence and the sets 7 and 5 respectively. Then each of 
the two sets 77‘ and 5 I ,  together with its rotation product, forms a group. 

Clearly 77’  is c l o ~  ~ under the rotation product. Also, since equation (17) 
implies that Z 
ativity of the rotation product i s  easily verified. The identity of each set is the 
null rotation vector, and the inverse of V (in either set) is -V. Furthermore, the 
respective mappings of the two sets defined herein are isomorphisms onto the 
group of rotation matrices. Thus I (the identity rotation matrix) is the image of 
the null rotation vector and R- 

Z ,  * ZL has length less or equal to unity, 5 ’ is closed. The associ- 

is the image of -V if R is the image of V . 
Actually, a one-to-one relationship between vectors and rotations may be 

defined without the concept of equivalence class. For example, when D = - 1 ad- 
ditional conditions on Z may be imposed so as to insure uniqueness. The choice 
of which additional constraints to select, however, depends on the preference of 
the user  (a situation analogous- to the many definitions of Eulerian angles). Thus, 
we introduced vector equivalence to emphasize that for the purpose of representing 
a rotation it does not matter which vector one selects out of an equivalence class 
for  a 180 degree rotation. 

The group of rotation transformations can now be represented by either of 
the two groups 5’  or  7‘ .  This representation has certain advantages over the 
usual matrix representation, stemming from the fact that the rotation is defined 
by three independent parameters, without recourse to trigonometry (the matrix 
approach requires nine elements, or the evaluation of six trigonometric functions 
plus two matrix multiplications). In many applications the vector representation 
requires fewer calculations than the matrix representation. For  example, matrix 
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multiplication requires 27 scalar multiplications plus 18 additions; the rotation 
product of equation (15) requires only 13 multiplications and 10 additions. 

The choice of which vector representation to use depends upon the applica- 
tion. The formulas associated with the Y rotation vector are in general quite 

sentation is a valuable tool for hand calculations or for deriving theoretical 
results, but has the inconvenience of becoming infinite for all 180-degree rotations. 
The Z vector representation, on the other hand, is always finite, always defined 
(uniquely, except for i ts  sign at 180-degree rotations), and the rotation product 
is valid for all rotations. However, the existence of the radical is inconvenient 
for hand calculations. The vector representation W = tan 8/4X may prove to be 
useful since it combines some of the assets of both the Y.and Z. In this case we 
have 

simple, requiring no radicals or trigonometric functions. Thus this vector repre- _ .  

w3 
1 

R (1 - + w 2 )  1 4 - 6 W 2 i - 1 )  I+8WWT+4(1-W2) 

2 
Y = -  w ,  

. 1 - w 2  

z .  1 w =  Y =  
i t  1 t m  

3. COORDINATES OF A ROTATED VECTOR 

One of the most frequent uses of a rotation matrix is to find the coordinates 
of a vector after the rotation. The vector representation yields a useful formula 
for  this application. Let V '  be the image of v under the rotation and R the matrix 
of the rotation (i.e., V' = RV). If Y and Z are the rotation vectors defining R, then 
equations (4), (5), and (14) give V '  as 

- [(1-Y?) V + 2 ( V .  Y ) Y  + 2 V x Y ]  9 Y 2  < t - v i -  t1y2 2 ( V  X)X y2 = 03 
v' 1 yv = 

7 

v '  1 zv z (1 -222)  V + 2 ( V '  z ) z + 2 m v x  z 
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Note that we have used the symbolism YV to denote the image of V under the 
rotation corresponding to Y. Thus the above equations define a vector multipli- 
cation in the same sense that RV is used to denote a matrix multiplication. 

4. ROTATIONS DETERMINED BY A VECTOR AND ITS IMAGE 

In many instances, one is given two vectors (V and v') and desires to deter- 
mine the matrix R such that v' = RV. If R is to be a rotation matrix, then we 
must have VI2 = V2. For simplicity, we assume that VI2 = V2 = 1. The rotation 
taking V into V' is not unique; however, the vector representation of the ''shortest 
path'' rotation is immediately obvious-the axis of rotation is collinear with V' x V 
and the angle of rotation iscos-' (VeV'). Thus 

y = l + V . V ' V '  1 x v, v.v'#-1 

1 z =  V ' X V ,  v - v ' f - 1 .  
)/2(1+V.V') 

If V 
Y has infinite magnitude with direction defined by2 . V' = - 1 then Z is any vector satisfying the two conditions Z = 1 and Z - V = 0; 

5. ROTATIONS DETERMINED BY TWO VECTORS AND THEIR IMAGES 

A common practice in orbit theory is to construct a rotation that takes the 
xy-plane into the plane of the orbit and also takes the x-axis into the direction 
of perigee. This is a particular example of the following problem: Given VI, V, 
(V, and v, noncollinear), V,' , andv,' such that v,' = V: , and 

V,' Vi = v,-v,, find the rotation that takes V, into v,' and V, into Vi . Here 
again, the vector representation of the rotation yields a simple solution. 

= v: , V i  

If V' = W, then equation (2) implies that BT V' = BV. By equation (6) and 
matrix multiplication, this condition can be written as 

V ' + Y x V '  v - Y X V ,  

11 



or 

v - v‘  = Y x ( V + V ’ )  , 

where Y is the vector representation o f R .  

Thus, the conditions V,’ = RV, andV,’ = Rv, may be expressed by 

V,  - v,‘ 1 Yx’(V,+V,‘) and V, - V,‘ = Y x ( V , t V , ’ )  . 

Let 

t i  = 1 ,  2) 
- Bi  - V i  + Vi‘ - Ai - Vi - Vi’ , 

then the condition equations become 

A i  = Y x B i  , ( i  1, 2 )  

where Ai - Bi = 0 and A, - B, =-A2 - B, . It is immediately obvious that Y - Ai = 0 .  If 
each side of the f i rs t  equation is cross  multiplied by the vector A,, we obtain 

A, x A ,  - - A, x I Y x  B,) (Az  . B,) Y - (A, . Y )  B, ’=  (Az * B1) Y ; 

thus if A, - B,= -A, - B, # 0 , we obtain a simple expression for Y , namely, 

1 
Y =  v, v,’ - v ,  - v,‘ ( V l  - % I )  (V2 - v i )  . 

12 



A more general expression may be obtained as follows. Cross multiply each 
side of the ith equation by B ; this gives 

Bi xAi = B ? Y -  (B, * Y )  B, . ( i  = 1, 2)  

Theref ore, 

B, - ( B l X A l )  = B:B2 - Y-(B, * B2)B, * Y  , 

B l  * (Bz 4 2 )  = B,'B, . Y  - (B1 B,) B, * Y , 

and solving these two linear equations for B, - Y andB; Y yields 

Substitution of these last expressions into equation (19) gives the solution 
for Y, provided BlxB, f 0. 

If V,' = V ,  and/or v,' = V, , the z rotation vector is obtained from Y by 
equations (17) and (19) unless B l x  B, = 0; otherwise, equations (17) and (18) pro- 
vide a much simpler expression forZ , namely, 

sgn (vl  - v,' -v ,  * v;) 
z =  (v, -v;) x (v, - v i )  . 

i ( V 1  - v,' - v, * vi), + [(v, - V J  x (v2 - v;)3 

WhenVi' = V i  and B,xB, = 0, Z = Vi. 
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The above expressions provide another means of determining the vector 
representation of a rotation from the matrix of the rotation R. Merely choose 
two independent vectors (V, and V,) and set  V,' = RV, , V,' = RV, . 

Given VI, V,, V i  andV,' suchthat V: = V i  ,V: = V,' and V ,  - V, 
= V  '-V ', the matrix of the rotation, R ,  which takes V , into V,' and V, into V i  can 
be determined from the vector representation obtained above and equation (4) or  
(5). A more direct approach, however, is to construct a right-handed orthonormal 
coordinate system from the vectors v,  and V, and a second system from the 
vectorsv,' and V,' in the same manner. The rotation taking the first system 
into the second will then take Vi into Vi'. The matrix of this rotation can be 
easily written as the product of two matrices, each of whose rows o r  columns 
are formed from the components of the constructed axes relative to some under- 
lying coordinate system. Let 

1 2  

u ,  = v,/Iv,I , u,' = Vl?IV, ' l  7 

- U,' = u p  u; 1 u, - u p u ,  > 

then 
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6. A LEAST sQUARES ROTATION - DETERMINATION OF ATTITUDE 

Consider a vehicle with a local coordinate system which has  been rotated 
from a fixed coordinate system. If the vehicle has equipment capable of deter- 
mining the direction (relative to the local coordinate system) of a point whose . 

direction relative to the fixed coordinate system is known, then the rotation re- 
lating the local and fixed systems can be determined by two or  more observations 
of such points.' If the directions were exact, then the rotation relating the two 
coordinate systems could be obtained from any two noncollinear observations 
by the methods of the previous section. In practice, however, exactness is not 
obtainable and in such cases one generally seeks the "least squares" solution. 

For  the case at  hand, we seek a rotation matrixR such that the scalar function 

is a minimum. Here Vi and W a r e  vectors defining the directions of a point 
relative to the fixed and local coordinate systems, respectively. The matrix 
R-thus also the function p(R)-has only three independent parameters. Any ro- 
tation which makes +(R) a minimum is either a solution of the three equations 
obtained by setting the partial derivatives of 4 with respect to each independent 
parameter to zero or  at a point where the partials do not exist. The use of 
Eulerian angles as the independent parameters leads to three condition equations 
which are quite complicated, tedious to derive, and must be dealt with a s  three 
scalar equations. The condition equations in terms of a vector representation 
of R, on the other hand, can be expressed as a single vector equation which is 
easily derived and has a solution obtainable by vector and matrix algebra. 

Since R is a rotation matrix, @(R) may be written as 

IThis section i s  a solution to Problem 65-1 by Grace Wahba in SIAM Review Vol. 7 ,  No. 3.  July  1965. 

2The Orbiting Astronomical Observatory has this capability, where the points are known stars. 

which appeared during the writing of this paper. 
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which as a function of Y E T  gives 

(1 -y2) vi * w; 4- 2(Vi Y) (w; * Y) + 2 ( W i X  vi $(R) r(v:tw:-& i = l  [ 
when Y 2  < a, and' 

where X2 = 1, when Y 2  = a. 

In the first case, we have 

- Y - ( v i . Y ) ( w i - Y )  -vi.w; 1 yj  
4 

- 
d$ - -  

i = l  
'Yj (I +Y2) 2 

r + ( i + y ?  (Vi .Y)Wi, + (w; .Y)Vlij - 
L 

J 
where the subscript j refers  to the j t h  component of the vector. Thus a neces- 
sary condition for @ to have a minimum (at least among the rotations of less than 
180O) at some Y is given by the vector equation 

2 [ X ( W i X V i )  .Y + ( V i . Y ) ( W i . Y ) + V i . W i Y  = ( l t Y 2 ) ~ [ ( v i ~ Y ) w i + ( w i * Y ) v i . w i x v i  1 . 1 
(21) 

(For convenience, the range of summation is omitted hereinafter; always the 
letter i will be used for  the summation index.) 

Taking the dot product of each side with Y ,  we obtain 

2 Z ( V i  . Y) ( W i  ' Y) = Z[Wi x Vi) ' Y + 2v; W J Y 2  -x(wi x V i )  y . 
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\ 
When this last expression is substituted in the vector equation and the factor 

1 t Y is divided out, we obtain 

The same substitution into equation (20a)gives 

when Y satisfies equation (22). Hence, to minimize q5 we must take the solution 
of equation (22) which makesY - XWi x Vi a maximum. 

Equation (22) may be written in matrix notation as follows: 

( A T Y I + B ) Y  = A (24) 

where I is the identity matrix, A is the vector 2 Wi x Vi and B is a symmetric 
matrix, with elements 

bjk = -L( v . .  1 1  w. ik tv.& W i j )  j f k  

b j  j = 2 C ( V i  - w; - v i j  W i j )  

(To see this most easily, write out equations (22) and (24) in component form.) 

If A = 0, theny = 0 is the desired solution (there may be other solutions if 
det B = 0, but the value of @ will be the same for all solutions). If A # 0, then 
the solutions may be obtained as outlined below. 
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Multiplying each side of the matrix equation by the adjoint of AT YI +B, we 
obtain 

b e t  ( A T Y I  +B)] Y = k d j  (AT YI + B] A , 

and a multiplication of this equation by ATyields the scalar equation 

[det(A'YI+B)l A T Y  = AT[adj ( A T Y I  +Bj] A . 

Denoting the scalar ATYby A , the scalar functions det ( A I  + B) and AT [ adj (AI +B)]A 
as f (A) and g ( h ) ,  respectively, the above scalar equation may be written as 

' 

A f ( h )  - g ( X )  = 0 . 

Note that the left-hand side, say h(h) ,  is a fourth-degree polynomial in A , and 
that - f  (-A) is just the characteristic polynomial of the symmetric matrix B. 

The solutions to equation (24)  are obtained by determining the zeros of h(h)  
and solving the resulting linear equations. However, in the discussion following 
equation (23) ,  it was determined that the maximum value of Y * Z(Wi xVi), i.e., 
the largest zero of h(X) (denote this zero by A o ) ,  leads to the minimum value of 
W). 

Since h(A) is a fourth-degree polynomial, A, may be obtained analytically; 
however, a numerical iterative solution is probably more practical, since the 
zeros of h ( h )  are easily bounded. W e  note, first of all, that +(Y)is a non-negative 
function; therefore, equation (23) implies 

A 0 - 2  < 1% (Vi - W i ) 2  , 
1 = 1  

which provides an upper bound. 

Since B is symmetric, there exists an orthogonal matrix, P say, such that 
P- BP is diagonal. Let Y '  and U be vectors such that Y = PY ' and A PU. Then 
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in terms of Y '  and U, equation (24) becomes 

( U T Y ! I + B ) P Y I  = PU , 

and a premultiplication by P- gives 

(uTy'  I t D )  Y '  =- U , 

where D is a diagonal matrix whose entries a re  merely the eigenvalues of B .  
(Without loss of generality, we  may assume the eigenvalues to be arranged in 
increasing order, say A ,  5 A, 5 A, .) Multiplying each side of the last equation 
by adj (UT Y ' I + D )  and then by UT yields the scalar equation 

d e t ( U T Y '  I + D )  UT.Y'  = UT adj (UTY' I + D )  U . 

However, uT y ' = AT Y - A  and D is diagonal, so that this last equation may be 
written in the form 

A ( A + A , ) ( A t A , )  ( A + A , )  = u: ( A + A , )  ( A + A , )  + U 2  ( A + A  ,) ("-A3) +u: ( A t A , )  ( A + A 2 ) *  

The left-hand side of the above equation is A f ( A )  and the right-hand side is g(A). 
We  may now easily determine the sign of g(A) when A = -A, , -A2, -A, (assuming 
A, 5 A, 5 A,), and thus also the sign of h (A) = A f (A) - g (A) at these points. From 
these considerations, it  can be shown that Aois at least as great as - A l ,  and 
also that the largest zero of g(A) (providedg(A) is not identically zero, i.e., 
A = 0) is less than o r  equal to -A,. Hence, a lower bound of our desired zero 
( Ao)  is -A,, which can be determined only by solving a cubic. But the largest 
zero of g(A) is also a lower bound, and this can by found by solving a quadratic. 

Thus far, we have obtained the minimum of @(R) for rotations of less than 
180 degrees. To obtain the minimum among all 180 degree rotations, we use 
the method of Lagrange for solving extremum problems with a constraint. The 
necessary conditions become 

1 

- 4 t ( V i  - x )  W i j  + (Wi - x )  V i j  + 2 p x .  J = 0 
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where p is Lagrange's multiplier and X must be such that X2 
our previous notation, the above conditions may be collected into the single vector 
equation 

1. In terms of 

where B is the symmetric matrix introducedjn equation (24). This last equation 
can be satisfied if and only if p is a root of the cubic equation 

det [($ - 2 c Vi...) I +B] = 0 , 

but the roots of this equation are given by 

p k  
'- 2 - 2 c Vi.Wi = -A, (k = 1, 2 ,  3 )  

where the 

and the sc 
these solutions may be obtained by multiplying the j t h  equation 
by x, and adding the three equations together. This yields 

p = 4 (Vi.X) (W;.X) , 

~ 

h,are eigenvalues of B. The condition equations thus become 

1 ,  (B-A, I) X = 0 , x2 = 

utions are just the unit eigenvectors of B. The value of @(R) at each of 
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which when substituted into the expression for @(R) (equation 20b) gives 

= t (Vi -wi) 2 + 2A, . 

Thus the eigenvector (with unit length) corresponding to the minimum eigenvalue 
( A , )  gives the minimum of @(R) for all rot l ions of 180 degrees. 

The minimum of p(R)  for rotations other than 180 degrees is given by equa- 
tion ( 2 3 ) ,  and is 

@ ( R )  = (Vi -Wi) - 2A0 , 

and it was also shown that A, 1 -A,. Hence, the rotation giving the minimum $(R) 
among all rotations is given by 

Y = (A, I +B)-' A ,  when f (Ao) # 0 , 

o r  by a 180-degree rotation with axis of rotation X defined by 

(Ao I + B )  X = 0 and X2 = 1 , 

when f (A,) = 0, where A, is the largest zero of h(A). 

To avoid inverting a near-singular matrix and dealing with large values of 
the components of Y when f (A,) is near zero, the Z vector representation of R may 
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be obtained from equation (17) and the relationship 

adj (Ao I + B) - a d j  (Ao I +B) 

f ( A o )  - 
- 

( A o  I +B)-l  = det ( A o  I + B) 

This gives 

and 

(Ao I + B )  Z = 0 and Z2 = 1, when f (Ao) = 0 , 

where 

a d j  ( A I  + B) A 2  I + x[Tr (€3) I - B] + a d j ( B )  , 

f ( A )  = A 3  + T r  (B)A2 + Tr(adj(B)) A + d e t ( B ) ,  

g(A) = AT[adj(AI +Bi] A , 

and Tr(B) denotes the trace of B. These last equations are easily verified by 
direct calculations. 

If n = 2 and V: V: = W: = W: , we conjecture that the following simple 
procedure gives the least squares solution. Let 
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and obtain the rotation which takes each U i  into Ui’  , by the techniques of the 
preceding section. Such a rotation takes the plane determined by V, andV, into 
the plane determined by W, and W, and insures that W, - RV, = W, * RV,. That such 
a rotation is the least squares rotation h a s  not been verified by direct calculation 
due to the lengthy and laborious algebra involved; however, symmetry considera- 
tions allow no different solution to be proposed. 

We  have also been very successful in solving equation (21) in the cases n > 2 
by successive substitutions, Le., using the iteration 

1 f yj2 

Yj+1 - - 2 [(vi - Yj) wi + (Wi - Yj)  v, + wi XVJ - 
2 [(wi XVi) * Y j  +(V;Y j) (WiYj) t vi.wl] i = l  

1 = 1  

Here, y is the j t h  approximation to Y ,  and Y o  is obtained as above using two of 
the Vi and their corresponding images W i  . In fact, in one case studied, the pro- 
cedure converged even when the angle of rotation was as large as 179 degrees. 

7. RELATIONS BETWEEN EULERIAN ANGLES, MATRIX OF ROTATION 
AND VECTOR APPROACH 

Since Eulerian angles have a wide usage (especially when the angles cor- 
respond to  yaw, pitch, and roll) it may be convenient o r  necessary to transform 
the matrix o r  vector parametrization of a rotation into Eulerian angles. To do 
this, a convention o r  positive sense of rotation must be established. Here, we 
assume that the matrices of the simple rotations about each of the coordinate 
axes are given by 

C O S @  0 - s i n 8  

cos d 
1 

s i n 8  0 

0 
R, ( e )  = (i c o s 6  

0 - s i n @  



where Ri(B) indicates a rotation of 0 about the ith axis. The matrix of any rota- 
tion R can then be written as 

1 ,  2, 3 i =  
j = 1 ,  2 ,  3 

= Rk (‘3) R j  (‘2) Ri k = 1 ,  2, 3 
i # j # k  

If i, j ,  and k are distinct, then by direct calculation one finds that 

s i n e ,  = 8.. 1 Ik r k i  7 C O S @ ,  s i n e 1  = - s i j k  r k j  , 

c o s 6 2 ~ ~ s  8 ,  = r k k  , cos 6, s i n e 3  = - 6 . .  i j k  r . .  1 1  ’ 

cos 0, C O S  0 ,  = r . .  1 1  ’ 

where 8 jk = 1 if i j k is a cyclic permutation of 123 and 6 i j k  = -1 otherwise. 
Thus if R is given, the angles are defir-d ::s follows: 

s i n e ,  = 8 . .  r k i  , i l k  

if cos 8, # o ,  

s inO1 = - 8 i j k  r k j  / C O S  e ,  , c o s e l  = rkk/cosB2 , 

s i n  0, = - 8 i j k  r . .  1 1  / c o s  9, , cos O 3  r i i  /cos02 
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. -  

if cos 8, = 0, el  and 0, are subject only to the conditions 

s i n  (e,  k Z i j  S i j k  r . .  1 J  ' 

C O S  (e, 6 . .  e 1) = 1 Jk 6 , ,  r i k  , 

where the upper signs are taken if sin 0, = 1 and the lower signs when 
sin 8, = -1. 

The factorization is not unique even when cos 8, # 0 since either choice of 
sign for cos 8, produces the same product matrix R. 

To factor R in the form 

(where the first and 1; ;t factors a r e  of the same form), let 

cos e ,  = r i i  ; 

if sin 8, # 0, 

s i n e 1  = r i j / s i n e 2  , C O S  01 = 8 j i r i k / s i n B 2  , 

s i n e ,  = r j i / s i n B 2 ,  cos 8, = - 6 . .  1 1  r k i / s i n B 2  , 

where 6 
sin 8, = 0, O 1  and 8, are only subject to the conditions 

= 1 if j i is in natural cyclic order and 8 = -1 otherwise. If 

s i n  (8, 5 0 , )  = 6 . .  J 1  r k j  , 

25 



c o s ( @ ,  +6,) = k r k k  , 

where the plus sign is taken if r i i  > 0 and the minus sign if r . . < 0 .  
1 1  

Given Eulerian angles el,  8, , 8, as defined above, the vector representation 
can be obtained by forming the product matrix R ,  and then using the techniques 
of the previous sections. A more direct approach, however, is to use equations 
(15) o r  (16) twice, where 

0 - Y i  - t a n T E i  , 

are the vectors corresponding to R i ( S )  and Ei  is the coordinate axis about which 
the rotation is taken (if 7-r < B < 271 then the negatives of the abo\ c expressions for 
the range - 7-r .C H < 0 must be used). 

To obtain the Eulerian angles from the vector Z ,  we have from equation (5) 

1 1  z K ) / l F F ]  , 

where the upper sign is used when i j is in natural cyclic order and the lower 
sign otherwise. T h e  angles are then obtained from the appropriate formulas 
above. 

8. EQUATIONS OF MOTION OF A RIGID BODY 

If R (  t )  i s  the matrix of a rotation which defines the orientation of a coordinate 
system (attached to a moving rigid body) relative to a fixed coordinate system 
then R satisfies the matrix differential equation 

R ( t )  z I l ( t ) R ( t ) ,  R ( 0 )  = I 
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where R is a skew-symmetric matrix such that nV = V X  W ( t )  for all vectors V, 
and w is the angular velocity vector. Writing this equation in the form 

and letting R = R, (8,) R j  (02) Ri  (e1 ) ,  w e  obtain 

Although this is a matrix equation, it represents only three independent component 
equations, since each of the product matrices on the right is skew-symmetric. 
These three independent equations can be collected into a single vector equation 
by using the well-known isomorphism between 3~ 3 skew-symmetric matrices 
and three-dimensional vectors, 

I t  is easy to verify that if R is a rotation matrix, then RS(v) R-l-RV. Also, from 
the definitions of R 1 ,  it is straightforward to show thatRl (e) R i  (0) - BE 1, 

where E1 is the coordinate axis of rotation (this is also valid for  rotations about 
any fixed line). From these considerations, and the fact that R - u: , equation 
(27) is equivalent to 

where A is a matrix whose columns a re  just the vectors R, R j  Ei , R, Ej  , m d  E, 
respectively, and h = ( i1, i2, 
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The matrix differential equation has no singularities, but requires the inte- 
gration of nine scalar functions. Equation (29), on the other hand, only involves 
three scalar functions, but the matrix A is singular when cos 0, =O for k # i , 
or when sin O 2  = Ofor k = i. Thus, no set  of Eulerian angles can be chosen so 
that will be defined for all rotations. In fact, any set  of Eulerian angles gives 
singularities for rotations as small as ninety degrees. 

To obtain the equations of motion expressed in terms of the Y vector, we 
merely differentiate equation (13) ,  and make the proper substitutions using equa- 
tions (4) and (13) ,  and the matrix differential equation. This gives 

1 
y = [ ( w . Y ) Y + Y x w t w ] ,  Y ( 0 )  = 0 . 

To solve for w cross-multiply each side by Y, and subtract the resulting equation 
from the original. Thus, 

1 
T ( l t Y 2 ) U  = Y - Y x i .  

The differential equation (30)  has no singularities, but from the definition of 
Y ,  we know that solutions involving 180" rotations will diverge to infinity. For 
many applications, however, involving only moderate displacements of the moving 
frame, this will not present any difficulties. 

The differential equations in terms of the Z rotation vector can be obtained 
in a manner similar to that used for the Y rotation vector. However, a more 
direct approach is to use the identity 

.. 

1 

i s y  ' 
z =  

whence, 

- 1 Y - Y  
z - -  e -  i s  (1 t Y 2 )  {GFY . 
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From equation (30)  we have 

1 Y - Y  = T ( 1 t y 2 ) o ;  - y . 

Thus, combining equations (30) thru (33),  we obtain 

z = + [ z x w t ) ' l m w ] ,  Z ( 0 )  = 0 . 

(33)  

(34) 

Conversely, let Z ( t )  be a differentiable vector function such that over some 
interval, say t o  < t < t l ,  Z 2  < 1 and Zsatisfies equation (34).  Then z ( t )  defines a 
rotation matrix R ( t )  by equation (5 )  and R is given by 

R = -42 * ZI t 2(ZZT t Z Z T )  t 2 ) / 1 - 2 2 S ( i )  - 2 2  * Z(1 - z 2 ) - 1 / 2 s ( z )  

where S(V) denotes the skew-symmetric matrix formed from the vector V by 
equation (28). Taking the dot product of each side of equation (34) gives 

or 

since Z 2  < 1. When equations (34) and (35) are substituted into the expression 
for R we find 

R = 6-F  [ZwT t U Z T  t s ( z x  w t  6%) - 2w * ZI] t z(zx t ( zx  &))ZT 

- w - Z S (  Z )  
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and direct calculation will indeed verify that R E RR for t o  < t < t,. In fact, R i2R 
even if Z 2  = 1 provided Z has a derivative at this point satisfying equation (34)  and 
equation (35) is valid in the limit as Z 2  approaches unity. For  example, if w is 
a non-zero constant vector, then 

is a function satisfying equation (34)  for - 77 1. I LZ 1 t 5 77 and indeed the matrix R defined 
by Z satisfies equdtion (26) over the same interval. 

,, Thus, both equations (30) and (34)  define the motion of a rigid body over a 
wider range of allowable orientations than Euler’s equations (equation 29) and 
only require the integration of three scalar equations which do not contain trigo- 
nometric functions. Furthermore, the results of the integration (especially Z )  
can be used directly, without having to generate the matrix, e.g. the coordinates 
of a vector relative to the fixed system may be obtained directly from the co- 
ordinates relative to the body system and Y o r  Z per  Section 3 ;  if Z, defines the 
orientation of the body at  time t relative to the body system at t = 0, and Z, 
defines the orientation when t t ,  relative to the body system at t = t 1 ,  then 
the rotation product Z = Z; Z, gives the orientation at time t, relative to the 
body system at t = 0 for all Z, and Z , .  Eulerian angles can also be obtained as 
described in the previous section. 

A s  with most differential equations, one would have to devote considerable 
time to equations (30) and (34) in order to describe completely the properties of 
the solutions. However, we mention only one common property of both equations, 
which is useful for approximating the solutions for small increments of time. If 
Y ( 0 )  Z (0) 0 , then w e  note that the n t h  derivative of Y or  Z at t 
the term f n - l  ) (0) (the (n-l)th derivative of w at t = 0), and for the first two 
derivatives this is the only L-rm. Thus, 

0 contains 
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where u and v are of the order of h3. Hence, to second order, both solutions may 
be approximated by the integral of the angular velocity. 

9. CONCLUSION 

The significant advantages of the vector approach to rotations as presented 
here  over other parametrizations is that the vector parameters can be obtained 
with ease from basic data, and need not be transformed to a new set in order to 
perform the algebra of rotations (the product of rotations and the product of a 
vector by a rotation). Not only is the need for evaluating trigonometric functions 
removed, but the singularities introduced when one attempts to obtain the polar 
form of a vector o r  factor a rotation matrix into simple rotations are also re- 
moved. To illustrate these last remarks, we cite one final important application 
of our vector approach to rotations. 

In orbit theory, it is customary to obtain the components of the position and 
velocity vectors by rotxcing a coordinate system in which the direction cosines 
of the angular momentum vector are given by E, 
in which these direction cosines are also known, say H = (h 
usually done by assuming H is of the form H = (sin i sin(), - sin i cos 0 ,  cos i)': 
thus the rotation is normally given by R = R,(-n) R, (- i). Unfortunately, this 
technique produces a singularity even in the trivial case i 
quired). On the other hand, from Section 4 we find almost immediately that 

(0, 0, l)T, into a fixed system 
h, , h,)' . This is 

0 (no rotation re- 

i f -  sin cos 0) 

is the rotation vector taking E, into H. Thus, the two parameters z 1  and z 2  define 
the rotation uniquely for all i except i -rr, 
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